Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis

نویسندگان

  • Marcin Nowotny
  • Sergei A. Gaidamakov
  • Robert J. Crouch
  • Wei Yang
چکیده

RNase H belongs to a nucleotidyl-transferase superfamily, which includes transposase, retroviral integrase, Holliday junction resolvase, and RISC nuclease Argonaute. We report the crystal structures of RNase H complexed with an RNA/DNA hybrid and a mechanism for substrate recognition and two-metal-ion-dependent catalysis. RNase H specifically recognizes the A form RNA strand and the B form DNA strand. Structure comparisons lead us to predict the catalytic residues of Argonaute and conclude that two-metal-ion catalysis is a general feature of the superfamily. In nucleases, the two metal ions are asymmetrically coordinated and have distinct roles in activating the nucleophile and stabilizing the transition state. In transposases, they are symmetrically coordinated and exchange roles to alternately activate a water and a 3'-OH for successive strand cleavage and transfer by a ping-pong mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mechanism of RNase H activity in DNA repair and reverse transcription

RNases H are nucleases that cleave ribonucleotides in RNA/DNA hybrid duplexes. Two classes of these enzymes have been described — RNases H1 and RNases H2. The first requires a stretch of at least four ribonucleotides in the hybrid for the cleavage to occur. In addition to its cellular form it also exists as a domain of reverse transcriptases — enzymes converting single-stranded RNA to double-st...

متن کامل

Crystal Structures of RNase H2 in Complex with Nucleic Acid Reveal the Mechanism of RNA-DNA Junction Recognition and Cleavage

Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of ...

متن کامل

Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release.

In two-metal catalysis, metal ion A has been proposed to activate the nucleophile and metal ion B to stabilize the transition state. We recently reported crystal structures of RNase H-RNA/DNA substrate complexes obtained at 1.5-2.2 Angstroms. We have now determined and report here structures of reaction intermediate and product complexes of RNase H at 1.65-1.85 Angstroms. The movement of the tw...

متن کامل

Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site.

Ribonuclease H (RNase H) selectively degrades the RNA strand of RNA.DNA hybrids in a divalent cation-dependent manner. Previous structural studies revealed a single Mg(2+) ion-binding site in Escherichia coli RNase HI. In the crystal structure of the related RNase H domain of human immunodeficiency virus reverse transcriptase, however, two Mn(2+) ions were observed suggesting a different mode o...

متن کامل

Intrinsic properties of reverse transcriptase in reverse transcription. Associated RNase H is essentially regarded as an endonuclease.

The intrinsic properties of reverse transcriptase in reverse transcription were studied using a synthetic, partial ovalbumin mRNA with a synthetic DNA oligonucleotide annealed to the 3'-end of the RNA as a model substrate. With or without concomitant cDNA synthesis, the RNase H activity of avian myeloblastosis virus (AMV)-reverse transcriptase cleaved the substrate at a site which would leave a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2005